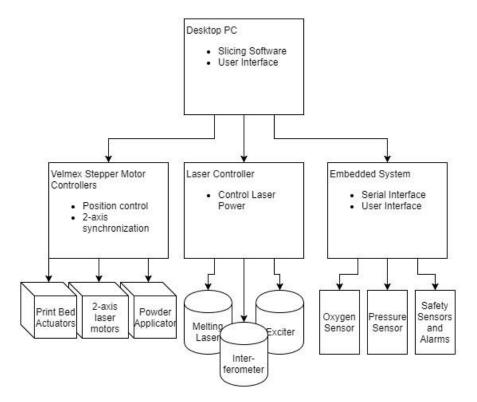

3D Metal Printer with NDE Capability


sdmay18-05 Kevin Oran Ben Pieper Jett Ptacek Rachel Shannon Caleb Toney

Problem Statement

To design and build an affordable Metal 3D Printer for NDE research.

Conceptual Sketch

Functional Requirements

• 3 lasers

- o 1064 nm 200 W melt laser
- 1064 nm ultrasound laser
- 1550 nm laser interferometer
- Blade/roller to deposit powder from powder bed to print bed
- Powder bed which moves up in order to deposit a new layer of powder
- Print bed which moves down after each layer is sintered by the laser
- Collection bin which collects excess powder not deposited on the print bed
- Any place with powder must be enclosed in a sealed chamber which can withstand a vacuum and be filled with nitrogen or argon gas

***For full list of functional requirements please see our Project Plan located on our team website: http://sdmay18-05.sd.ece.iastate.edu/

Nonfunctional Requirements

- Volume of sealed chamber needs to be minimized
- System software should be easy to modify by future users
- Build speed

Technical/Other Constraints/Considerations

- Need to fit several moving parts into sealed gas chamber
- Constraints from manufacturer of laser head and stepper motor slides
- Environmental issues, particularly dust
- Evaluated many methods
 - Mirror
 - Moving mirror (galvo system)
 - Window

Market Survey

- Build Time Process Monitoring
 - NDE can be used as a per slice monitoring technique
- Commercial 3D Metal Printers
 - Some use a recoater instead of a roller to apply next layer of powder
 - Most machines have the laser rotate with a ball joint and larger machines also have the laser move across the print area with a 2 axis stepper motor system.
- Additive Manufacturing Software
 - Most open source software is used for plastic additive manufacturing.
 - Available 3D slicing software generates g-code which is an instruction language for a the majority of plastic printing machines.

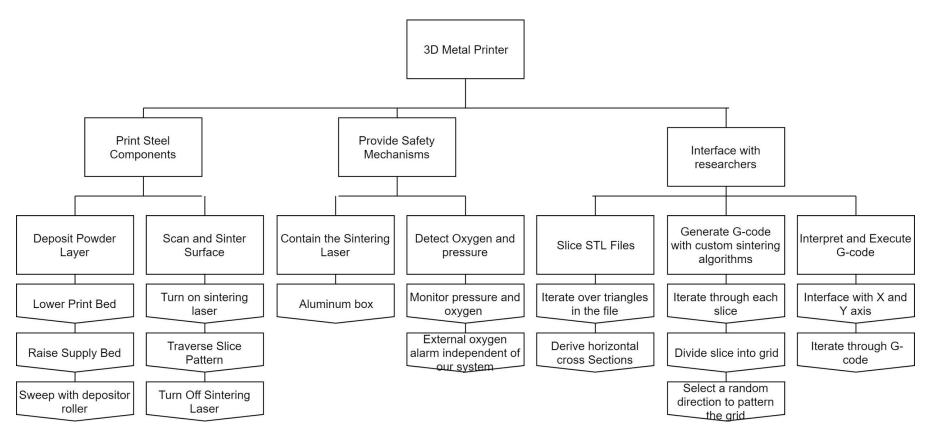
Potential Risks & Mitigation

- Components may not survive the vacuum
 - Communicate with suppliers
- Stepper Motors for the powder beds may not be able to handle the weight of the powder
 - Lower max powder volume
- Nitrogen gas could leak from our machine
 - Safety sensors and proper ventilation
- Powder could get into the stepper motors
 - Stepper motors are enclosed

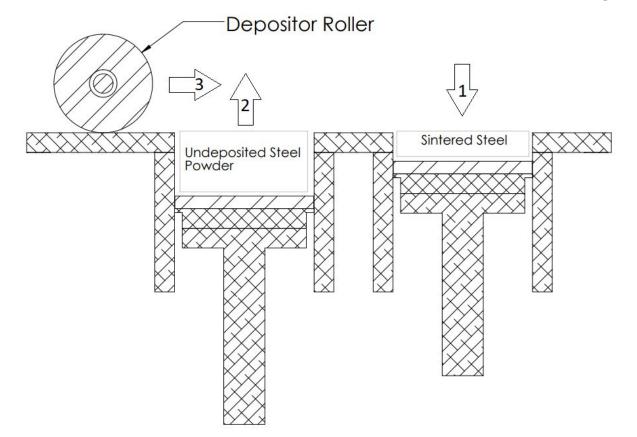
Resource/Cost Estimate

- External Oxygen Sensor \$109.00
- Internal Oxygen Sensor \$1840.00
- Internal Pressure Sensor \$19.90
- Arduino Uno Rev 3 \$27.95
- Desktop PC \$400
- 3 Velmex Motor Controllers \$3742.00
- Vacuum Electrical Pass Throughs \$1455.00
- Velmex Xslides \$ TBD
- Chemistry Machine Shop potential quote \$ TBD

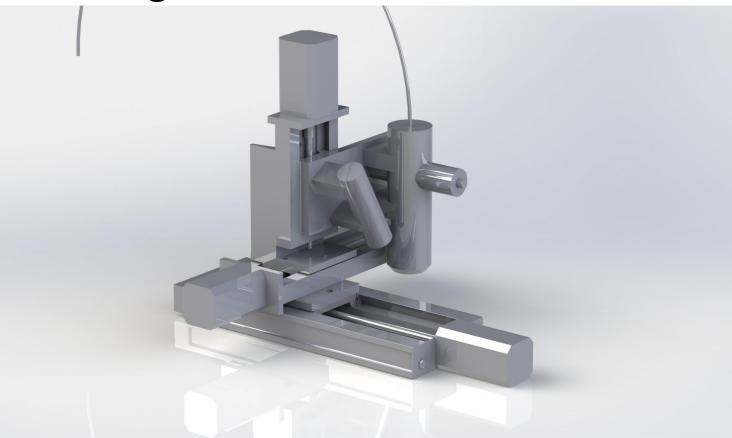
Total = TBD


-This estimate does not include previously purchased items for this project or ISU resource that are free to students.

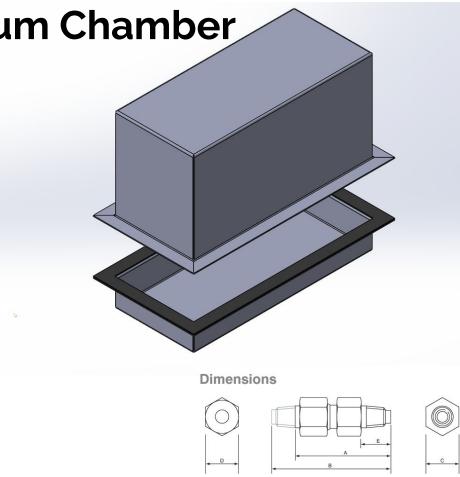
Project Milestones & Schedule


• Completed Milestones: Mechanical Design, Several Parts Ordered, Slicing Framework

Tasks	9/3-9/9	9/10-9/16	9/17-9/23	9/24-9/30	10/1-10/7	10/8-10/14	10/15-10/21	10/22-10/28	10/29-11/4	11/5-11/11	11/12-11/18	11/19-11/25	11/26-12/2
Laser Head Research													
Additive Manufacting Research													
Sensors Research													
Stepper Motor Research													
Materials/Design Research													
CAD Modelling													
Motor Controllers Research													
Mirror System Research													
PC Requirements Research													
Powder Beds Design													
Thermal Camera Research													
Cable Route Design													
Pressure & Oxygen Sensor Research				1									
CAD Slicing Software Research													
Slicing Algorthim Developing													
Overall Software Developing													
Stepper Motor & Pressure Problem													
Pressure Sensor Programming													
Port Research													


Functional Decomposition

Detailed Design: Deposit Powder Layer


Detailed Design: Scan and Sinter Surface

Detailed Design: Vacuum Chamber

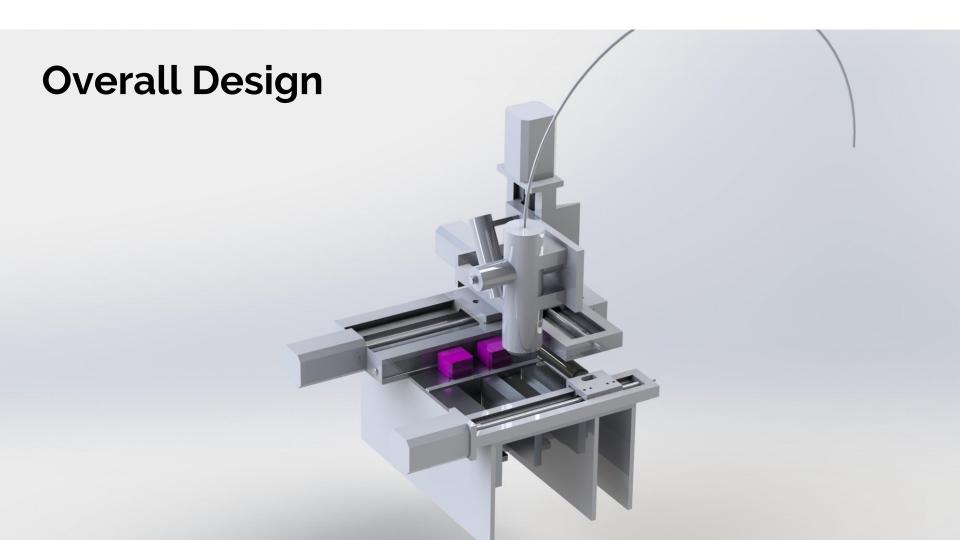
Features

- Wire pass throughs for signals
- Pass throughs for fiber optics
- Pass throughs for Oxygen Sensor
- Removable panel for accessibility

Detailed Design: Sensor Selection

- Internal Oxygen Sensor
 - AMI 2001LC Trace Oxygen Analyzer
 - Required sensitivity on ~1000ppm level
- External Oxygen Alarm
 - BW Honeywell Clip 2.0
 - 19.5%/volume alarm
- Internal Pressure Sensor
 - Seeed Studio Grove High Accuracy Barometer

Internal oxygen sensor. Source: AMI user manual


Detailed Design: Slicing STL files

Current GUI software:

Team 5 3D Metal Printer

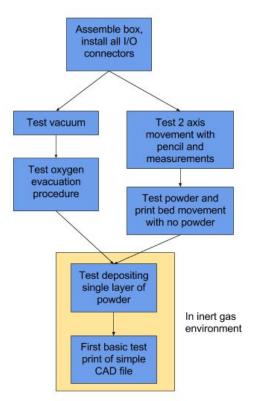
Import a .stl file, slice, and then print.

HW/SW/Technology Platforms used

- GUI software C#, Visual Studio, STL file input, g-code
- Stepper motor controllers Velmex hardware, serial commands
- Sensor acquisition and communication Arduino
- CAD software Solidworks, GrabCAD

Testing and Evaluation

- Broken into two parts
 - Software testing plan
 - Hardware/system testing plan
- Performance metric testing
 - Quantitative and qualitative metrics

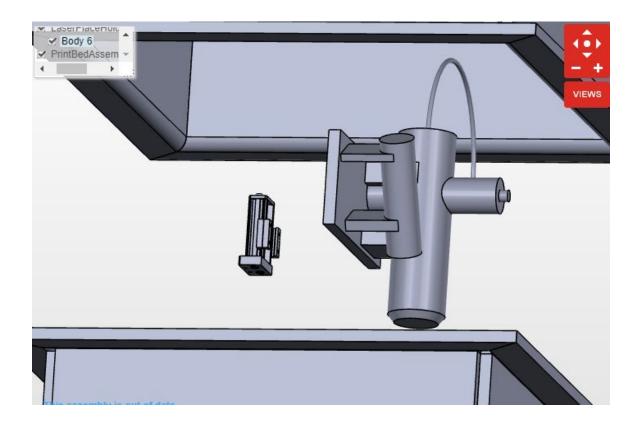

Software Testing Plan

- Software broken up into testable pieces
 - CAD -> Slices -> Line Segments -> Grid -> g-code -> Serial Commands
 - Each piece tested independently
 - Visualization software
- Testing also done at unit level
 - Not formal unit tests yet

MainWindow		×
Team 5 3D Metal Printer		
Import a .stl file, slice, and then print.		
Slice		
Print		

Hardware/System Testing Plan

- Several layers of precedence
- Plan to start as soon as hardware ready



Performance Testing

- Key metrics:
 - Ease of use
 - Safety
 - $\circ \quad {\sf Ease of modification/adaptation}$
- Other metrics:
 - Print speed
 - Print accuracy

Prototyping

- Current prototyping done in CAD software
- Allows early detection of interference, component interaction

Task distribution/Team composition

- Kevin Oran:
 - Responsible for Solidworks and majority of mechanical design, research
- Caleb Toney:
 - Responsible for sensor integration, research, wiring/connectors
- Jett Ptacek:
 - Responsible for software design and integration, research
- Ben Pieper:
 - Responsible for software design and integration, research
- Rachel Shannon:
 - Responsible for sensor integration, research, wiring/connectors

Project Status

- Hardware:
 - Hardware design finalized
 - Enclosure to be manufactured by January
 - Lasers, sensors recently arrived
 - Velmex slides and motors quote requested
- Software:
 - Early GUI complete
 - Slicing algorithm complete excluding edge cases

Moving Forward

- Hardware:
 - Design finalized
 - Assemble printer upon receipt of parts
- Software:
 - Refine slicing algorithm
 - Refine UI
 - Software Implement 2-axis stepper motors
 - Software implement powder and supply beds, roller
 - Software implement sensors and alarms
- Testing:
 - Extensive testing of hardware and software implementations

Questions?